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we have un2 > ea. For the values of q satisfying the inequality (4) the conditions of 

evolutionarity hold on the segment CC, of the adiabatic curve. When the inequality 

2P, + q(v - 1) < 0 holds, the function pz(vz) increases monotonously from - 00 at 

v, = ur I X to Pa = - (P1 - q) / x when v, tends to 00 (Fig. 3). Thus, the whole of the 

curve p2(vz) lies below the axis p = 0 and has no physical meaning. 
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We investigate a longitudinal flow past an axisymmetric body in the case when 

a part of the streamlined surface is not known but instead, the distribution of the 

tangential velocities is specified. The flow is assumed irrotational, and the fluid 
ideal and incompressible. At the stagnation points the body surface may behave 
as a sphere, a cone or an edge. An integro-differential equation for determining 
the form of the free surface is derived for any arbitrarily specified velocity. In 

the case of a cavitation flow the method of the ~determined coefficients is used 
to solve the above equation. An analytic and graphical dependence of the cavi- 
tation number on the apex angle of cone and its relative length, is given. The 
theory is satisfactorily confirmed by experimental data. 

1, Btrtrmsnt of thr problem, Let a longitudinal irrotational stream of an 
ideal incompressible fluid flow past a slender axisymmetric body. The surface of this 
body is described by the equation p = R (z) , where 

! 
p- (2) --l<z<b 

R(z) = r(z) 

I 

as given by the condition zt2 =- vf (z), b<z<c (1.1) 
r.i. (2) c<z<i 

The segment (8, c) which is defined by the distribution of tangential velocities U_ (2) is 
a free boundary, while the segments t-i, bf and (e, 1) are parts of the rigid boundary, 

The problem is reduced to finding the equation of the free boundary r (2). We assume 
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that the streamlined surface satisfies the following conditions: 
1) fictions R’(z) and ~~~(2) / dz are ~nt~~~ and Rf-i) = R (I) = 0, 

2) function diRz(z) / dz2 is piecewise continuous and has first order discontinuities 
at the ints b and c, 

3: R2M< ,I 4” E. d7K~“(z) < C, k = 1,2, 3 (Conditions Of thinness), j 

The conditions under which the equation of the free boundary r (z) satisfies the above 

restrictions, have been obtained in [ 11 (except the inequality for the third order deriva- 
tive which we introduce here in order to simplify certain expressions). 

For a sufficiently small E the potential of the longitudinal flow past such a body (the 
velocity of the unperturbed flow is taken as unity) is given by the following approximate 

formula [ 21: 1 

where pl and PZ are the radii of curvature of the surface at the stagnation points. The 

functions I’ and Y account for the influence of rounding at the stagnation points. 

Let us integrate (1. Z} by parts; we set p = r (z), differentiate with respect to z and 
again integrate by parts 

1 

c 

* PI t 

Y p "1 p'(cJ \ 

P 
--v-- I(5 - zP + PI”‘” 

dSi_ (X.4) 

“1 
- [cp’ (2) - 11 = J?(z) 

Here p = 1”’ (z), cp (4 = cp (2, r, (4) and I (2) = r (2, r, (z)). 
We note that the functions I’ (z) and y (5) are of the order of a3 everywhere except at 

the stagnation points, and can therefore be almost always neglected (the integrals are of 

the order of 8). Their influence will only become noticeable in the case of flows past 
spheres with free boundaries when the flow separation point has to be determined. From 

this it follows that on the segment (b, c) we can assume P (5) = l/a p (6) which sim- 

plifies the computations considerably. 
Thus, the equation of the free surface p = r (z) can be found using the relation r (z) = 

Y’PO om the nonlinear integro-dif~rential equation (1.4) in which the function 

9’ (z) will be determined later. 

2. BlBiC equation, In order to simplify (1.4) we shall determine the order of 

smallness of each term in its left-hand side. Using the relations 

i (zf = “s p-” (9 I@ - 4” -+- PI+@ + 5 P+” (5) 1K - 3% + Pl-‘f”eJ 
-1 c 

h (2) = P” (b) In lb- 28 I + V/(b - ZP + P 
2 

+ p” (c) In c - 2 + v; - z12 + P 
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In x+vx2+p I In -$- - In 
lzli- VrZPfP 

2 t x<O 

2 
==C 

x+lfz2+P 
In 2 7 x>o 

we can rewrite the first term in the form 

1 . 
I p” 03 d5 Jf- f i (2) f h (2) - _-l frr, _ zj2 +p -= - P” (2) ln 4 

c . s P” fc) sgn (p - 2) In 
IS-zli- V(5--Y+P 

2 --d6 
h 

(2.3) 

The second term of (1.4) can be written, under the assumption that the body is slender, 

in the form [Z] 1 
2 ’ pd5 

-2 I P’ (5) 
-1 I(5 -- zj2 + PP 

= p’ (4 t1 3 0 b In 141 

and for the last remaining term we have 

cp’ (2) = II: zJg f,i + 9% = VT + 1/2vtr’2 

Thus, the basic relation (1.4) can be written in the form of a sum in which the terms 
are clearly arranged according to their order of smallness, with the accuracy of up to 
pa In p (we neglect p under the radical sign in the right-hand side of (2.3)) 

P(Z) 
% 

-P((z)ln~-- 
s 

pm (5) s.v (b - 4 In I 6 - z I 4 i- 

P’ ;, p’ (2) 1 
i(z) + h(z) - 

PI2 (z) _- 
p(2) +-TV+ p(z) + v+ 

- 1 -2s r’ (2) 

The above basic equation enables us to find the equation of the free boundary Jo (z) = 
I/p under the condition that the tangential velocity is equal to v7. Here P (z) = 
l/4 p (z) [ (1 - y) (z)i and the functions i (z), h (z), T (z) and Y (2) are defined by (1,4), 

(2.1) and (2.2). 
3, Cavitation flow. We shall assume the velocity at the free boundary to be 

constant ur = i/f + Q (Q is the cavitation number}, so that at small Q we have u, = 
1. i- I/Z Q. Neglecting the influence of the stagnation points (r = 0, y = O), we obtain 

c 

P(Z) ’ 
- p” (z) In -J- - 

s P” (5) %n (5 - 4 In I5 - z I4 -I- (3.1) 
b 

S(z)+X(z)-+~+2Q_0 

b 

T(z) = 1 ~-“(~~~(~-~~~+-pl-“~~~+~~~(6)l(~-~)~+p~-”~d~ 
-1 c 

x (2) = p” (b) In lb--z1+ l/@-4Zs.P +P”(c)InC-ZP1/(C.-af~+P 
2 2 
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The relation (3.1) allows us to find the form of the streamlined free surface. If we as- 
sume that 1 lo p 1 $s- 1, so that the function 3L (z) and the definite integral in (2.3) can 
both be neglected, we arrive at the equation obtained in [3]. 

Equation (3.1) can be solved using the method of undetermined coefficients. Let us 

a 

-~ 
I 

set p (z) = a0 -+- a,z -I- . . . + a,@ , and require that 
the basic equation (3.1) holds at the nodes zl, zs, . . ., 
%+I. This yields a system of n + 1 equations with 
n + 1 unknowns a~, a~, . . ., a,, and by determin- 
ing these unknowns we obtain the equation r (z) =: 

y’%(z) of the cavity- 
The solution simplifies ~nsiderably in the case of 

a Rlabushinskii flow (symmetrical relative to the plane 

z =O), when only even powers of z remain in the 
expansion. In this case we can utilize the expression 

k=z 

which ensures that the specified value of functionp(z) 

and of its derivative at the trailing and leading edges 

(z = _t E) is achieved. 

Fig. 1 

We illustrate the proposed theory by considering a 
cavitation flow past a cone in accordance with the 

~ab~hinskii model. We take the cavitation number 
Q as the free parameter and find its dependence on 

the half-length of the cavity 2 and on the tangent of the apex half-angle of cone k -Z 

tg a. The equation (3.1) with z = 0 was used to compute Q . The results are shown in 
Fig. 1. The solid curves 1 - 5 correspond to the following values of k : 0.1, 0.15, 0.2, 
0.25, 0.3. If 1 is nearly equal to unity, which corresponds to the case of a long (com- 

pared to the cone) cavity, then the following formula is recommended : 

For k = 0.268 (apex angle SO*) the cavitation numbers computed according to the above 
formula. deviate from the ex~rimentally obtained data f4) only by 4% (provided that the 
length of the real cavity is 1 i- I). 
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